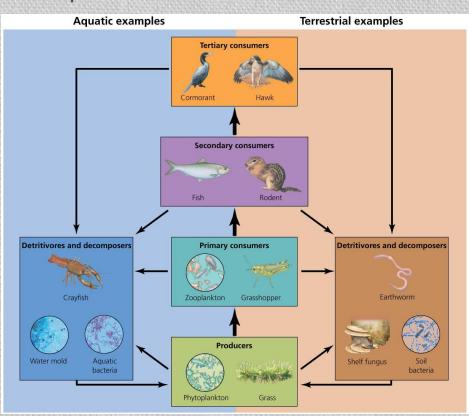


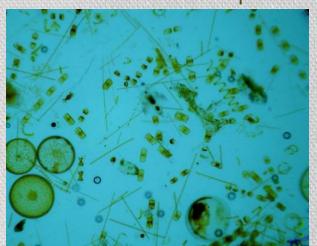
ENERGY FLOW IN ECOSYSTEMS


TOPICS 1.9 TO 1.11

Enduring Understanding: Energy can be converted from one form to another.

Learning Objective: Explain how matter is recycled within ecosystems and energy decreases as it flows through ecosystems.

Energy and Matter Pass Through Trophic Levels


- Energy and matter are transferred through ecosystems when community members consume one another.
 - As we saw with the biogeochemical cycles, matter is continuously recycled within ecosystems.
 - As we saw with primary productivity, energy in ecosystems is constantly being absorbed and lost as heat due to cellular respiration needs of cellular metabolism.
- Organisms are assigned to trophic levels based on how they obtain matter and energy.
 - trophic levels are ranks in the feeding hierarchy of an ecosystem
 - Organisms in lower trophic levels supply organisms of higher trophic levels with matter and energy.
 - Producers (autotrophs)
 - Consumers (1°, 2°, 3°; heterotrophs)
 - Detritivores and decomposers

Producers produce food from inorganic sources of matter and energy

Producers or autotrophs ("self-feeders")

- Organisms that produce their own organic compounds from simple inorganic compounds.
 - Photosynthetic producers use CO₂ and H₂O and the energy from sunlight to make glucose
 - Green plants, Algae and phytoplankton (Protista), Cyanobacteria
- Chemosynthetic bacteria oxidize simple inorganic compounds (such as H_2S) to release enough energy to fix Carbon from CO_2 and synthesize simple sugars
 - Various extremophiles of the domain Archaea

Consumers

- Primary consumers
 - <u>second</u> trophic level
 - Organisms that consume producers
 - Herbivores consume plants
 - Deer, grasshoppers

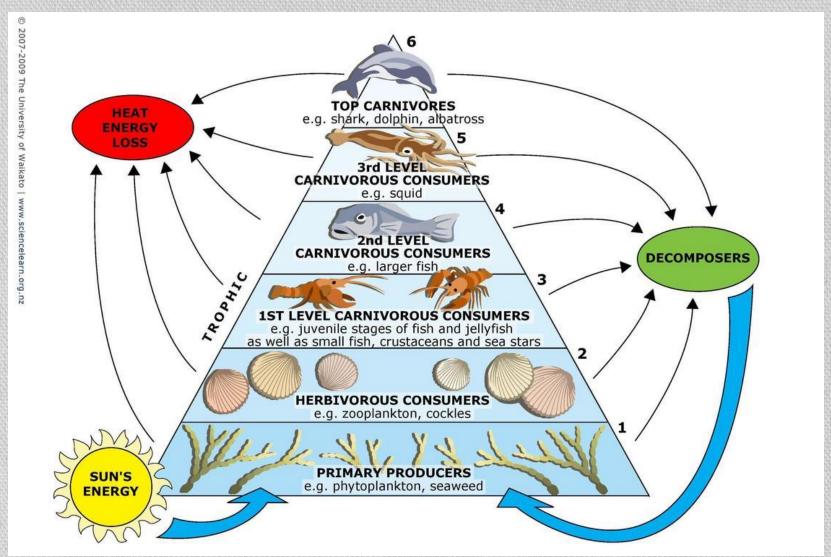
- Secondary (and higher) consumers
 - third (or higher) trophic level
 - Organisms that are predators
 - Carnivores consume meat
 - Wolves, ,raptors, rodents (that eat insects)

Omnivores are consumers that eat both producers (plants) and other consumer species (animals). What trophic level are they?

Detritivores and Decomposers

- Organisms that consume nonliving organic matter
- enrich soils and/or recycle nutrients found in dead organisms and waste material
- Usually assigned to the highest trophic level in an ecosystem since they can feed from all other available trophic levels.
- **Detritivores** scavenge waste products or dead bodies
 - "Eat" their way through soil
 - Millipedes, earthworms, soil insects, vultures

- Decomposers break down organic material into simpler chemicals
 - Secrete enzymes, dissolve organic matter and absorb nutrients
 - Fungi, bacteria



Energy, biomass, and numbers decrease at higher trophic levels

- Typically, producers obtain energy from inorganic sources
- As organisms do work, chemical energy is converted to heat through cellular respiration
 - Each trophic level contains less energy than the trophic level below it
 - Excess energy, not used for an organisms own metabolism, is stored in the chemical bonds of their cells and tissues
- Since energy is stored in the bonds of biomass, if there is less energy, there is also less biomass at a given trophic level.
- Because most higher trophic level species are predators, they are usually larger than there prey, so the number of organisms also declines with each successive trophic level

Example trophic levels and the transfer of energy and matter in marine ecosystems

Trophic Level Efficiency

- The efficiency of energy and biomass transfer from one trophic level to the next higher level is typically estimated as 10%
 - In many food webs it is likely less than 10%

Trophic Efficiency = energy stored in one trophic level energy stored on the next lower level

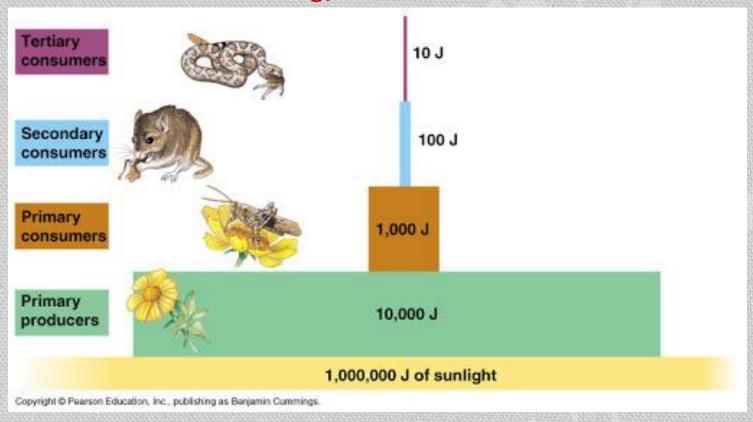
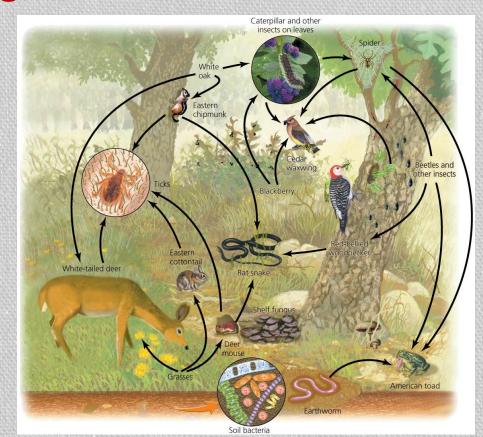
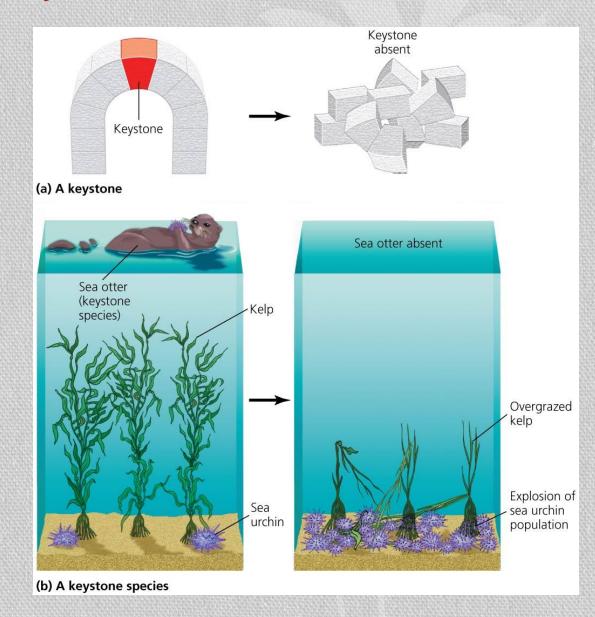



Figure represents energy stored in biomass at each trophic level

Food webs show feeding relationships and the flow of matter and energy

- Food chains are a linear series of feeding relationships
 - Greatly simplified; leaves out most species
- Food webs are a visual map of feeding relationships and energy flow
 - Includes many different organisms at all various levels
 - Consists of many food chains


What direction do the arrows point? Why?

• Circumstances that affect the population of one species, are likely to result in a chain reaction that affects of populations of one or more other species in food web

Some organisms play outsized roles in

communities

- Species interactions differ in the strength of their effects
- Keystone species
 have a strong or
 wide-reaching
 impact far out of
 proportion to their
 abundance
- Removal of a keystone species has substantial ripple effects
 - Removal of otters significantly alter the entire food web

Some organisms play outsized roles in communities

- Keystone species may cause a trophic cascade
 - a phenomenon in which predators at high trophic levels indirectly affect populations at low trophic levels
 - Predators keep species at intermediate trophic levels in check, allowing growth of species at a lower level
 - Extermination of wolves led to increased deer and elk populations,
 which overgrazed vegetation and changed forest structure
- Other keystone Species are "Ecosystem Engineers"
 - They physically modify the environment
 - Beaver dams, prairie dogs, ants, zebra mussels

