TOPIC 2.5 AND 2.7 NATURAL DISRUPTIONS TO ECOSYSTEMS AND ECOLOGICAL SUCCESSION

Enduring Understanding: Ecosystems have structure and diversity that change over time.

Learning Objective: Explain how natural disruptions, both short and long term, impact an ecosystem and describe ecological succession and its effect on ecosystems.

Related Readings: pg 84 – 93, "Environment, The Science Behind the Stories" 4th edition, Withgott, Jay and Laposata, Matthew.

ESSENTIAL KNOWLEDGE (AS IDENTIFIED BY COLLEGE BOARD)

ESSENTIAL KNOWLEDGE

ERT-2.G.1

Natural disruptions to ecosystems have environmental consequences that may, for a given occurrence, be as great as, or greater than, many human-made disruptions.

ERT-2.G.2

Earth system processes operate on a range of scales in terms of time. Processes can be periodic, episodic, or random.

ERT-2.G.3

Earth's climate has changed over geological time for many reasons.

ERT-2.G.4

Sea level has varied significantly as a result of changes in the amount of glacial ice on Earth over geological time.

ERT-2.G.5

Major environmental change or upheaval commonly results in large swathes of habitat changes.

ERT-2.G.6

Wildlife engages in both short- and long-term migration for a variety of reasons, including natural disruptions.

ESSENTIAL KNOWLEDGE

ERT-2.I.1

There are two main types of ecological succession: primary and secondary succession.

ERT-2.1.2

A keystone species in an ecosystem is a species whose activities have a particularly significant role in determining community structure.

ERT-2.1.3

An indicator species is a plant or animal that, by its presence, abundance, scarcity, or chemical composition, demonstrates that some distinctive aspect of the character or quality of an ecosystem is present.

ERT-2.J.1

Pioneer members of an early successional species commonly move into unoccupied habitat and over time adapt to its particular conditions, which may result in the origin of new species.

ERT-2.J.2

Succession in a disturbed ecosystem will affect the total biomass, species richness, and net productivity over time.

NATURAL DISRUPTIONS TO ECOSYSTEMS

- Naturally occurring disruptions are common in ecosystems and result in cycles and steady states, as well as directional change in the environment.
- Disruptions and environmental change occurs at various magnitudes
 - a tree falling in the forest (small scale), Fires and tropical storms, introduction of invasive species / removal of a keystone species (moderate scale), meteor impacts and global climate change (large scale)
 - Some have greater impacts than human caused disruptions
- Disruptions and environmental change occur on several different possible time scales:
 - **Periodic changes**: Occur with regular frequency such as seasons and tides, are predictable and allow organisms to adapt
 - **Episodic changes**: Occasional events with irregular frequency and are somewhat predictable; hurricanes, droughts, fires.
 - Random changes: no regular frequency. We know why they happen but are not able to predict them based on the timing of past events; volcanic eruptions, earthquakes, meteor strikes

LONGER TERM ECOSYSTEM CHANGE: GLACIAL AND INTERGLACIAL PERIODS OF THE CURRENT ICE AGE

- Periodic changes in Earths orbit and tilt alter climate, sea levels and CO_2 concentrations
- We are currently in an interglacial period (most recent 20,000+ years) of the fifth major ice age (lasting the last 2.6 million years) in the history of Earth.
- We are due for another period of glacial advance based on the periodicity of glacial and interglacial cycles within the current ice age.
- The magnitude of change on earth is sizeable between glacial and interglacial periods.
 - Temperature changes of 10-14 °C
 - result in changes of up to 130m in sea levels (thermal expansion and melting ice caps)
 - CO₂ levels rise and fall as a result of temperature change (Ocean absorption of CO₂, Permafrost sequestration of C), but CO₂ levels can also cause temperature change (greenhouse effect)
 - Current CO₂ levels are much greater than historic levels

Change in Sea Level (500,000 years)

LONGER TERM ECOSYSTEM CHANGE: GLACIAL AND INTERGLACIAL PERIODS OF THE CURRENT ICE AGE

- Changes in climate throughout Earth's history have resulted in changing ecosystems
 - Sea level drops during glacial periods increasing the size of exposed land masses and creating land bridges
 - Aquatic and terrestrial biome distribution changes globally in response to glacial and interglacial periods.

B Glacial vegetation

SOME ORGANISMS PLAY OUTSIZED ROLES IN COMMUNITIES

- Keystone species have a strong or widereaching impact far out of proportion to their abundance.
 - Many, but not all, are apex predators (top of the food chain).
- Removal of a keystone species has substantial ripple effects on other members of the biological community.
 - Removal of otters significantly alters the entire food web of kelp forest ecosystems.

SOME ORGANISMS PLAY OUTSIZED ROLES IN COMMUNITIES

Keystone species may cause a trophic cascade

- a phenomenon in which predators at high trophic levels indirectly affect populations at lower trophic levels
- Predators keep species at intermediate trophic levels in check, allowing growth of species at a lower level
- Extermination of wolves led to increased deer and elk populations, which overgrazed vegetation and changed forest structure
- Other keystone Species are "Ecosystem Engineers"
 - They physically modify the environment
 - Beaver dams, prairie dogs, ants, zebra mussels

RESPONSE TO DISTURBANCES

- Organisms respond to environmental changes caused by disturbances by:
 - *Migrating* (e.g. shifting biome distributions)
 - **Adapting** (many examples of evolutionary changes)
 - Or simply dying out (extinction / extirpation) when changes are too drastic and/or sudden
- Examples:
 - Grazers and browsers of the Serengeti migrate with the rains
 - Caterpillars have adapted to a warming climate
 - Will songbirds adapt too, or go extinct?

COMMUNITIES RESPOND TO DISTURBANCE THROUGH THE PROCESS OF SUCCESSION

- Disturbances change conditions in ecosystems and alter the biological community of the ecosystem
 - Populations can respond to disturbance by migrating, adapting or perishing.
- Many communities experience regularly occurring patterns of disturbances.
 - The pattern of disturbances in a community is referred to as a communities **disturbance regime.**
 - Disturbance regimes will vary in scale, frequency, and intensity
- **Succession** is the predictable series of changes in a community following a disturbance
 - Primary Succession
 - Secondary Succession

PRIMARY SUCCESSION FOLLOWS SEVERE DISTURBANCE

- **Primary succession** occurs after disturbance removes all vegetation and soil; starts from bare rock
 - Follows extreme disturbances that damage or remove existing soils such as glaciation, volcanic eruptions, abandonment of paved areas.
 - Physical and chemical weathering of rocks and wind and water erosion increase mineral content of newly forming soils.
 - Biological communities play important roles in rebuilding soils
 - Chemical (secretions of lichens) and physical processes of rock erosion (growth of plant roots) to form mineral sediments in soil.
 - Decomposition of dead organisms and organic wastes add organic material and nutrients to mineral sediments created by erosion to form new soils.

SEQUENCE OF BIOLOGICAL COMMUNITIES DURING PRIMARY SUCCESSION

Succession following the eruption of Mount Saint Helens (link)

- Secondary succession is the process of recovery from a disturbance that dramatically alters the biological community, but does not destroy the soil or seed banks in the soil.
- The soil and seed banks, as well as root stocks form "building blocks" that help jump start the process of secondary succession
- Secondary succession usually occurs more rapidly than primary succession.
 - it does not require the slow, geologic processes that build soil.
 - Seed banks and roots stocks may remain intact in the soil, allowing producers to immediately repopulate, without waiting for others to spread to the disturbed area from nearby source populations.
- Fires, hurricanes, farming, logging can lead to secondary succession.

SECONDARY SUCCESSION

SPECIES ARE ADAPTED TO CERTAIN STAGES OF SUCCESSION

Pioneer species are the first species to arrive after a disturbance

- Often wind dispersed seeds, fast growing, fast reproducing, annuals, tolerant of shallow soils, bright sunlight
- Primary succession: lichens, mosses, liverworts
- Secondary succession: grasses, sedge, wildflowers, raspberries, "weeds"

SPECIES ARE ADAPTED TO CERTAIN STAGES OF SUCCESSION

Mid-successional Species

- Help develop deeper soils through cycles of their death and decomposition
- Broad range of tolerance and broad niches, generalists
- Individuals with moderate growth rates and reproductive rates, perennials, sun tolerant, require deeper, more nutrient rich soils than pioneers
- Shrubs and small trees

SPECIES ARE ADAPTED TO CERTAIN STAGES OF SUCCESSION

Late Successional Species of the Climax community

- Community that would develop and remain in place with few changes if no new disturbances were to restart the process of succession (species composition varies depending on biome)
- Narrower ranges of tolerance, narrower niches, specialists
- Larger, slow growing trees, more shade tolerant seedlings, require deep soils for extensive root networks
- Maples and oaks for example

CHARACTERISTICS OF COMMUNITIES CHANGE DURING SUCCESSION – SPECIES DIVERSITY

- Diversity increases during early stages of succession but declines during later stages.
 - Initially, few species have adaptations that allow them to tolerate conditions following the disturbance so diversity is low.
 - As pioneer and early successional species return, diversity goes up.
 - As the community reestablishes itself, additional species can tolerate conditions in the formerly disturbed area and diversity increases further.
 - As abiotic conditions stabilize, and populations in the once disturbed area have grown, competition intensifies and weaker competitors must migrate to other areas or face extirpation.
 Species diversity declines in late-middle stages before leveling off.

CHARACTERISTICS OF COMMUNITIES CHANGE DURING SUCCESSION – BIOMASS AND PRODUCTIVITY

- Biomass increases throughout succession, but the rate that biomass increases (productivity) declines throughout succession.
 - Initially there are few individuals and biomass is low.
 - Producers colonize the area with seeds that dispersed into the disturbed area and begin to grow. Biomass increases.
 - Individuals are young and grow rapidly so biomass continues to increase and does so at a rapid rate.
 - As the community establishes itself, there are more mature individuals who have reached full size so biomass is high, but biomass is increasing slowly or not at all.
 - Biomass is high, but NPP is relatively low in climax communities

COMMUNITIES EVOLVE IN RESPONSE TO DISTURBANCE

- Communities have adapted different ways of responding to disturbance scale, intensity and frequency.
 - Resistance
 - Communities with large amounts of energy and matter stored in biomass are well suited to resisting many potential disturbances. Most forests types are resistant (e.g. taiga and temperate deciduous).

• Resilience

- Communities that experience frequent, low intensity disturbance are often not very resistant, but the they recover quickly and are highly resilient. Grasslands and scrublands (chaparral) are resilient biomes.
- A community that is highly resistant to disturbance is usually not very resilient; a highly resilient community is generally not very resistant.
- A disturbed community may never return to its original state.
 - Disturbance may lead to crossing a physical threshold.
 - e.g. Allowing invasive species to gain a foothold, extirpation of keystone species, recent megafires, combined with long-term drought.
 - Such communities are said to undergo a *phase shift* or *regime shift*

VIDEO RESOURCES

- Succession Interactive
 - https://biomanbio.com/HTML5GamesandLabs/EcoGames/succession_interactive.html? fbclid=IwARIeGvk8it7DZDZWNVhZoZGEBLxhhL28mCOYh8AQEdBLCg9IpUbWH zqE2CM