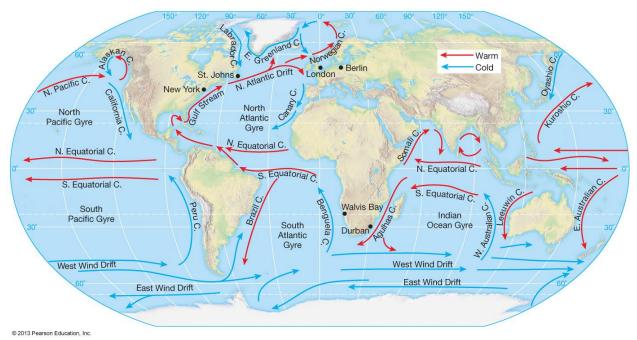

TOPIC 4.9 OCEAN CURRENTS, EL NIÑO AND LA NIÑA

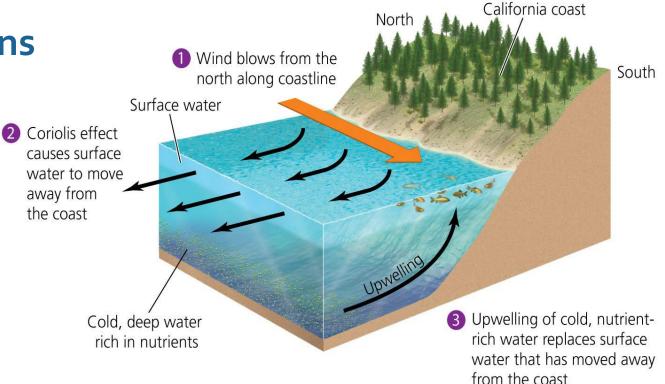
Enduring Understanding: Most of Earth's atmospheric processes are driven by input of energy from the sun.

Learning Objective: Describe the environmental changes and effects that result from El Niño and La Niña events (ENSO).

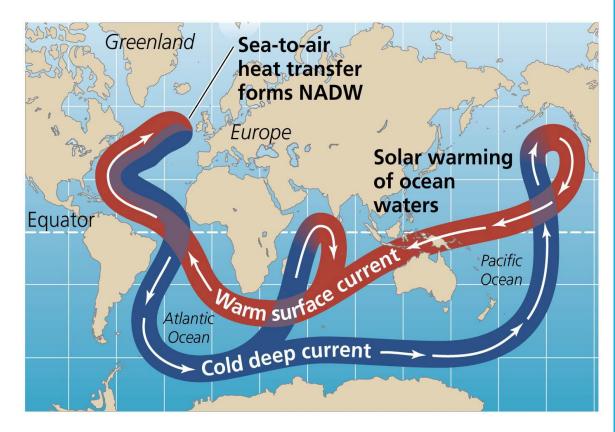

Solar energy structures ocean water

- Surface zone (2% of volume)
 - Consistent water density down to about 150m
 - Warmed by sunlight and well mixed by wind
- Thermocline (18% of Volume)
 - Reduced sunlight and poorly mixed resulting in increasingly cold, salty water as depth increases through this zone
 - Temperature decreases and water density increases rapidly with depth
- Deep zone (remaining 80% of Volume)
 - zone below the thermocline containing uniformly dense, sluggish water
 - Unaffected by winds, storms, sunlight, temperature

Surface water flows horizontally in currents

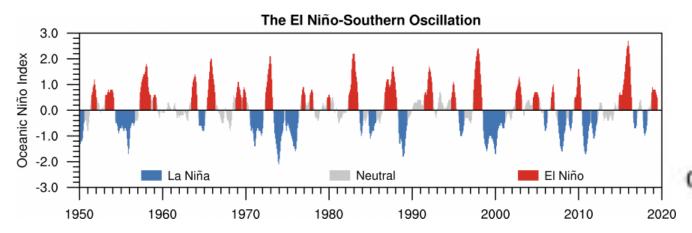

- *Currents* are vast river-like flows in the oceans
 - Move horizontally in the upper 400m of water
 - Driven by density differences, differential heating and cooling, wind, and the Coriolis effect.
- Transport heat, nutrients, pollution, and the larvae of many marine species
 - The fast flowing warm water of the Gulf Stream current moderates Europe's climate
 - The Pacific Gyre has concentrated trash and debris in creating the "great pacific garbage patch"

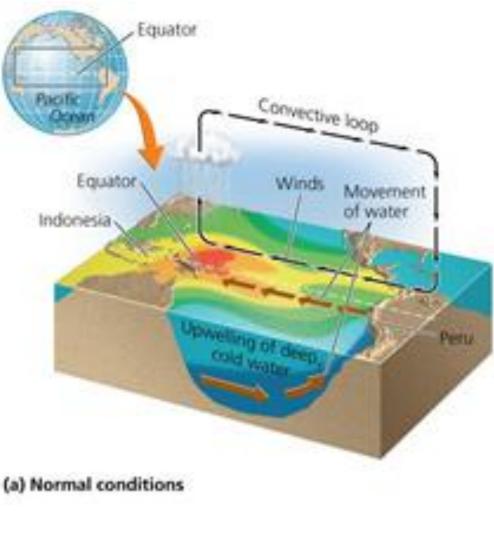
Water Moves Vertically in Oceans


- Upwelling is the localized upward flow of cold, deep water toward the surface
 - Occurs where strong winds and the Coriolis effect move water away from the coastline.
 - As warmer surface waters move away from the coast, nutrient rich cold deep waters rise to the surface.
 - Deep waters are rich in nutrients since most detritus in the ocean sinks to the bottom where it is decomposed by benthic organisms
 - Regions of upwelling, such as the west coast of the Americas, typically have high primary productivity and therefore lucrative fisheries

- Downwelling is the localized process in which oxygen-rich water sinks
 - Occur where surface currents converge with each other or continents
 - Transports surface waters, rich in dissolved gases, to deeper waters
 - "Buries" CO₂ in the deep waters, and delivers O₂ to deep water life forms.

- Horizontal and vertical movement causes the world wide current system known as *Thermohaline circulation*
 - Warmer, fresher (less dense) water moves along the surface. Cooler, saltier, (denser) water moves deep beneath the surface
- The Gulf Stream is a warm Atlantic current running north, up the east coast of the United States
 - results from winds pushing warm, low salt, equatorial waters to the west where they are deflected north up the coast
- North Atlantic Deep Water (NADW) in the NE Atlantic

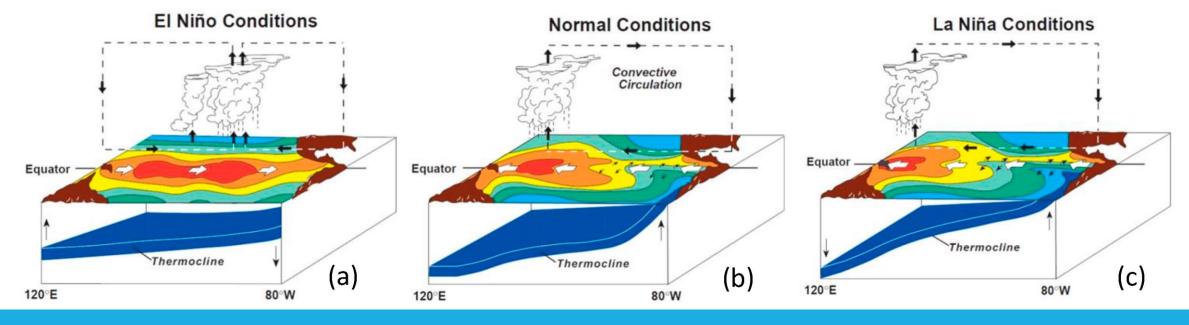

Ocean Circulation



- As the Gulf Stream waters move north, it releases heat and cools, evaporation along its journey makes these waters saltier
- Sinking cooler water creates a region of downwelling

El Nino Southern Oscillation (ENSO)

- A pattern of shifting winds & ocean currents in the pacific ocean between South America and Australia/Southeast Asia
 - Oscillates, or shifts regularly, from El Nino (warmer, rainier) to La Nina (cooler, drier) conditions along coast of Central and South America
- Normal Conditions (Neutral)
 - Equatorial Trade winds blow east to west across the Pacific resulting in moderate upwelling along the coast of the Americas


El Nino Southern Oscillation (ENSO)

• El Niño

- Trade winds weaken and may even reverse direction
 - west \rightarrow east
- Warm water spreads eastward, suppressing upwelling in the eastern pacific (west coast of the Americas)

La Niña

- Stronger than normal trade winds blow
 - west ←←← east,
- Winds push water west, causing it to "pile up" along the east coast of Australia / Southeast Asia
- Cold, nutrient rich waters rise to the surface along the equatorial, west coast of Central / South America

Effects of El Nino

- Suppressed upwelling & less productive fisheries in the Americas
- Warmer winter in much of North America
- Increased precipitation & flooding in Americas (W coast especially)
- Drought in southeast Asia & Australia (fires)
- Weakened monsoon activity in India & SE Asia
- Temporary changes in species distribution, including vectors of disease (mosquitos)

Effects of La Nina

- Stronger upwelling & better fisheries in the Americas than normal
- Cooler, drier weather in Americas
- Rainier, warmer, increased monsoons and flooding in SE Asia
- Temporary changes in species distribution

TAO Project Office/PMEL/NOAA

